Prologue

What Is Progress?

E very day, we hear from executives, journalists, politicians, and even some

of our colleagues at MIT that we are heading relentlessly toward a better

~world, thanks to unprecedented advances in technology. Here is your new
phone. There goes the latest electric car. Welcome to the next generation of
social media. And soon, perhaps, scientific advances could solve cancer,
global warming, and even poverty.

Of course, problems remain, including inequality, pollution, and
extremism around the globe. But these are the birth pains of a better world. In
any case, we are told, the forces of technology are inexorable. We couldn’t
stop them if we wanted to, and it would be highly inadvisable to try. It is
better to change ourselves—for example, by investing in skills that will be
valued in the future. If there are continuing problems, talented entrepreneurs
and scientists will invent solutions—more-capable robots, human-level
artificial intelligence, and whatever other breakthroughs are required.

People understand that not everything promised by Bill Gates, Elon Musk,
or even Steve Jobs will likely come to pass. But, as a world, we have
become infused by their techno-optimism. Everyone everywhere should
innovate as much as they can, figure out what works, and iron out the rough
edges later.

WE HAVE BEEN here before, many times. One vivid example began in
1791, when Jeremy Bentham proposed the panopticon, a prison design. In a
circular building and with the right lighting, Bentham argued, centrally
positioned guards could create the impression of watching everyone all the



time, without themselves being observed—supposedly a very efficient (low-
cost) way of ensuring good behavior.

The idea at first found some traction with the British government, but
sufficient funding was not forthcoming, and the original version was never
built. Nevertheless, the panopticon captured the modern imagination. For the
French philosopher Michel Foucault, it is a symbol of oppressive
surveillance at the heart of industrial societies. In George Orwell’s /984, it
operates as the omnipresent means of social control. In the Marvel movie
Guardians of the Galaxy, it proves to be a flawed design that facilitates an
ingenious prison breakout.

Before the panopticon was proposed as a prison, it was a factory. The
idea originated with Samuel Bentham, Jeremy’s brother and an expert naval
engineer then working for Prince Grigory Potemkin in Russia. Samuel’s idea
was to enable a few supervisors to watch over as many workers as possible.
Jeremy’s contribution was to extend that principle to many kinds of
organizations. As he explained to a friend, “You will be surprised when you
come to sce the efficacy which this simple and seemingly obvious
contrivance promises to be to the business of schools, manufactories,
Prisons, and even Hospitals....”

The panopticon’s appeal is easy to understand—if you are in charge—and
was not missed by contemporaries. Better surveillance would lead to more
compliant behavior, and it was easy to imagine how this could be in the
broader interest of society. Jeremy Bentham was a philanthropist, animated
by schemes to improve social efficiency and help everyone to greater
happiness, at least as he saw it. Bentham is credited today as the founder of
the philosophy of utilitarianism, which means maximizing the combined
welfare of all people in society. If some people could be squeezed a little in
return for a few people gaining a great deal, that was an improvement worth
considering.

The panopticon was not just about efficiency or the common good,
however. Surveillance in factories implied inducing workers to labor harder,
and without the need to pay them higher wages to motivate greater effort.

The factory system spread rapidly in the second half of the eighteenth
century across Britain. Even though they did not rush to install panopticons,
many employers organized work in line with Bentham’s general approach.
Textile manufacturers took over activities previously performed by skilled



weavers and divided them up more finely, with key elements now done by
new machines. Factory owners employed unskilled workers, including
women and small children, to perform simple repetitive tasks, such as
pulling a handle, for as many as fourteen hours per day. They also supervised
this fabor force closely, lest anyone slow down production. And they paid
low wages.

Workers complained about conditions and the backbreaking effort. Most
egregious to many were the rules they had to follow in factories. One weaver
put it this way in 1834: “No man would like to work in a power-loom, they
do not like it, there is such a clattering and noise it would almost make some
men mad; and next, he would have to be subject to a discipline that a hand-
loom weaver can never submit to.”

New machinery turned workers into mere cogs. As another weaver
testified before a parliamentary committee in April 1835, “I am determined
for my part, that if they will invent machines to supersede manual labour, they
must find iron boys to mind them.”

To Jeremy Bentham, it was self-evident that technology improvements
enabled better-functioning schools, factories, prisons, and hospitals, and this
was beneficial for everyone. With his flowery language, formal dress, and
funny hat, Bentham would cut an odd figure in modern Silicon Valley, but his
thinking is remarkably fashionable. New technologies, according to this view
of the world, expand human capabilities and, when applied throughout the
economy, greatly increase efficiency and productivity, Then, the logic goes,
society will sooner or later find a way of sharing these gains, generating
benefits for pretty much everybody.

Adam Smith, the eighteenth-century founding father of modern economics,
could also join the board of a venture capital fund or write for Forbes. In his
view, better machines would lead to higher wages, almost automatically:

In consequence of better machinery, of greater dexterity, and of a more
proper division and distribution of work, all of which are the natural
effects of improvement, a much smaller quantity of labour becomes
requisite for executing any particular piece of work, and though, in
consequence of the flourishing circumstances of the society, the real
price of labour should rise very considerably....



In any case, resistance is futile. Edmund Burke, contemporary of Bentham
and Smith, referred to the laws of commerce as “the laws of nature, and
consequently the laws of God.”

How can you resist the laws of God? How can you resist the unstoppable
march of technology? And anyway, why resist these advances?

ALL OF THIS optimism notwithstanding, the last thousand years of history
are filled with instances of new inventions that brought nothing like shared

prosperity:

* A whole series of technological improvements in medieval and early
modern agriculture, including better plows, smarter crop rotation,
more use of horses, and much improved mills, created almost no
benefits for peasants, who constituted close to 90 percent of the
population.

» Advances in European ship design from the late Middle Ages
enabled transoceanic trade and created massive fortunes for some
Europeans. But the same kinds of ships also transported millions of
enslaved people from Africa to the New World and made it possible to
build systems of oppression that lasted for generations and created
awful legacies persisting today.

« Textile factories of the early British industrial revolution generated
great wealth for a few but did not raise worker incomes for almost a
hundred years. On the contrary, as the textile workers themselves
keenly understood, work hours lengthened and conditions were
horrible, both in the factory and in crowded cities.

» The cotton gin was a revolutionary innovation, greatly raising the
productivity of cotton cultivation and turning the United States into the
largest cotton exporter in the world. The same invention intensified the
savagery of slavery as cotton plantations expanded across the
American South.

+ At the end of the nineteenth century, German chemist Fritz Haber
developed artificial fertilizers that boosted agricultural yields.
Subsequently, Haber and other scientists used the same ideas to design



chemical weapons that killed and maimed hundreds of thousands on
World War [ battlefields.

» As we discuss in the second half of this book, spectacular advances
in computers have enriched a small group of entreprencurs and
business tycoons over the last several decades, whereas most
Americans without a college education have been left behind, and
many have even seen their real incomes decline.

Some readers may object at this point: Did we not in the end hugely benefit
from industrialization? Aren’t we more prosperous than earlier generations,
who toiled for a pittance and often died hungry, thanks to improvements in
how we produce goods and services?

Yes, we are greatly better off than our ancestors. Even the poor in Western
societies enjoy much higher living standards today than three centuries ago,
and we live much healthier, longer lives, with comforts that those alive a few
hundred years ago could not have even imagined. And, of course, scientific
and technological progress is a vital part of that story and will have to be the
bedrock of any future process of shared gains. But the broad-based
prosperity of the past was not the result of any automatic, guaranteed gains of
technological progress. Rather, shared prosperity emerged because, and only
when, the direction of technological advances and society’s approach to
dividing the gains were pushed away from arrangements that primarily
served a narrow elite. We are beneficiaries of progress, mainly because our
predecessors made that progress work for more people. As the eighteenth-
century writer and radical John Thelwall recognized, when workers
congregated in factories and cities, it became easier for them to rally around
common interests and make demands for more equitable participation in the
gains from economic growth:

The fact is, that monopoly, and the hideous accumulation of capital in
a few hands, like all diseases not absolutely mortal, carry, in their
own enormity, the seeds of cure. Man is, by his very nature, social and
communicative—proud to display the little knowledge he possesses,
and eager, as opportunity presents, to encrease his store. Whatever
presses men together, therefore, though it may generate some vices, is
favourable to the diffusion of knowledge, and ultimately promotive of



human liberty. Hence every large workshop and manufactory is a sort
of political society, which no act of parliament can silence, and no
magistrate disperse,

Electoral competition, the rise of trade unions, and legislation to protect
workers’ rights changed how production was organized and wages were set
in nineteenth-century Britain. Combined with the arrival of a new wave of
innovation from the United States, they also forged a new direction of
technology—focused on increasing worker productivity rather than just
substituting machinery for the tasks they used to perform or inventing new
ways of monitoring them. Over the next century, this technology spread
throughout Western Europe and then the world.

Most people around the globe today are better off than our ancestors
because citizens and workers in early industrial societies organized,
challenged elite-dominated choices about technology and work conditions,
and forced ways of sharing the gains from technical improvements more
equitably.

Today we need to do the same again.

The good news is that incredible tools are available to us, including
magnetic resonance imaging (MRI), mRNA vaccines, industrial robots, the
internet, tremendous computational power, and massive amounts of data on
things we could not measure before. We can use these innovations to solve
real problems—but only if these awesome capabilities are focused on
helping people. This is not the direction in which we are currently heading,
however.

Despite what history teaches us, the predominant narrative today has
shifted back toward something remarkably close to what was prevalent in
Britain 250 years ago. We are living in an age that is even more blindly
optimistic and more elitist about technology than the times of Jeremy
Bentham, Adam Smith, and Edmund Burke. As we document in Chapter 1,
people making the big decisions are once again deaf to the suffering created
in the name of progress.

We wrote this book to show that progress is never automatic. Today’s
“progress” is again enriching a small group of entrepreneurs and investors,
whereas most people are disempowered and benefit little.



A new, more inclusive vision of technology can emerge only if the basis
of social power changes. This requires, as in the nincteenth century, the rise
of counterarguments and organizations that can stand up to the conventional
wisdom. Confronting the prevailing vision and wresting the direction of
technology away from the control of a narrow elite may even be more
difficult today than it was in nineteenth-century Britain and America. But it is
no less essential.
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Artificial Struggle

Nothing has been written on this topic which can be
considered as decisive—and accordingly we find everywhere
men of mechanical genius, of great general acuteness and
discriminative understanding, who make no scruple in
pronouncing the Automaton a pure machine, unconnected
with human agency in its movements, and consequently,
beyond all comparison, the most astonishing of the inventions
of mankind.

—EDGAR ALLAN POE, “Maelzel’s Chess Player,” 1836 (italics in original)

The world of the future will be an ever more demanding
struggle against limitations of our intelligence, not a
comfortable hammock in which we can lie down to be waited
upon by our robot slaves.

—NORBERT WIENER, God and Golem, Inc., 1964

In its special report on the future of work in April 2021, the Economist

magazine took to task those worrying about inequality and dwindling job
opportunities for workers: “Since the dawn of capitalism people have
lamented the world of work, always believing that the past was better than
the present and that the workers of the day were uniquely badly treated.”



Fears about Al-driven automation are particularly overblown, and
“popular perceptions about the world of work are largely misleading.” The
report proceeded to provide a clear restatement of the productivity
bandwagon: “In fact, by lowering costs of production, automation can create
more demand for goods and services, boosting jobs that are hard to automate.
The economy may need fewer checkout attendants at supermarkets, but more
massage therapists.”

The report’s overall assessment: “A bright future for the world of work.”

The management consulting company McKinsey expressed a similar
conclusion in early 2022 as part of its strategic partnership with the annual
World Economic Forum in Davos:

For many members of the world’s workforces, change can sometimes
be seen as a threat, particularly when it comes to technology. This is
often coupled with fears that automation will replace people. But a
look beyond the headlines shows that the reverse is proving to be true,
with Fourth Industrial Revolution (4IR) technologies driving
productivity and growth across manufacturing and production at
brownfield and greenfield sites. These technologies are creating more
and different jobs that are transforming manufacturing and helping to
build fulfilling, rewarding, and sustainable careers.

The Economist and McKinsey were articulating views of many tech
entrepreneurs and experts that concerns about Al and automation are
exaggerated. The Pew Research Center surveyed academics and technology
leaders, and reported statements from more than a hundred of them, with the
overwhelming majority stating that although there were downsides, Al would
bring widespread economic and societal benefits.

According to the prevailing perspective, there may be some disruption
along the way—for example, in terms of jobs lost—but such transition costs
are unavoidable. In the words of one of the experts quoted by the Pew
Research Center, “In the coming 12 years AI will enable all sorts of
professions to do their work more efficiently, especially those involving
‘saving life’: individualized medicine, policing, even warfare (where attacks
will focus on disabling infrastructure and less in killing enemy combatants
and civilians).” The same person also conceded, “Of course, there will be



some downsides: greater unemployment in certain ‘rote’ jobs (e.g,
transportation drivers, food service, robots and automation, etc.).”

But we should not worry too much about these downsides, for we have
the same tech entrepreneurs to ease the burden with their philanthropy. As
Bill Gates articulated at the 2008 World Economic Forum, these successful
people have an opportunity to do good while doing well for their businesses,
by helping the less fortunate with new products and technologies. Ile
declared that “the challenge is to design a system where market incentives,
including profits and recognition, drive the change,” with the goal of
“improving lives for those who don’t fully benefit from market forces.” He
dubbed this system “creative capitalism” and set the philanthropic goal for
everybody “to take on a project of creative capitalism in the coming year™ as
a way of alleviating the world’s problems.

We will argue in this chapter that this vision of almost inexorable benefits
from new technology, including intelligent machines, led by talented
entrepreneurs is an illusion—the Al illusion. Like Lesseps’s conviction that
canals would benefit both investors and global commerce, it is a vision
rooted in i1deas, but 1t receives a further boost because it enriches and
empowers elites corralling technology toward automation and surveillance.

Even the framing of digital capabilities in terms of intelligent machines is
an unhelpful aspect of this vision. Digital technologies are general purpose
and can be developed in many different ways. In steering their direction, we
should focus on how useful they are to human objectives—what we will call
“machine usefulness.” Encouraging the use of machines and algorithms to
complement human capabilities and empower people has, in the past, led to
breakthrough innovations with high machine usefulness. In contrast,
infatuation with machine intelligence encourages mass-scale data collection,
the disempowerment of workers and citizens, and a scramble to automate
work, even when this is no more than so-so automation—meaning that it has
only small productivity benefits. Not coincidentally, automation and large-
scale data collection enrich those who control digital technologies.

From the Field of Al Dreams

People are right to be excited about advances in digital technologies. New
machine capabilities can massively expand the things we do and can



transform many aspects of our lives for the better. And there have also been
tremendous advances. For example, the Generative Pre-trained Transformer
3 (GPT-3), released in 2020 by OpenAl, and ChatGPT released in 2022 by
the same company, are natural-language processing systems with remarkable
capabilities. Already trained and optimized on massive amounts of text data
from the internet, these programs can generate almost human-like articles,
including poetry; communicate in typical human language; and, most
impressively, turn natural-language instructions into computer code.

Software programs have a simple logic. A program, or algorithm, is a
recipe that instructs a machine to take a prespecified set of inputs and
perform a set of step-by-step computations. For example, Jacquard’s loom
took several punched cards as its input and activated an clegantly designed
mechanical process, which moved a beam and wove cloth to produce the
designs specified in the cards. Different cards created distinct designs, some
of them strikingly complex.

Modern computers are referred to as “digital” because the inputs are
represented in discrete form, taking one of a finite set of values (most
commonly as zeros and ones). But they share with Jacquard’s loom the
general principle that they implement exactly the sequence of computations or
actions that are specified by a programmer,

What about artificial intelligence? Unfortunately, there is no commonly
agreed upon definition. Some experts define artificial intelligence as
machines or algorithms demonstrating “intelligent behavior” or “high-level
capabilities,” although what these are is often open to debate. Others provide
definitions motivated by programs such as GPT-3, equating intelligent
machines with those that have goals, observe their environment, obtain other
inputs, and attempt to achieve their objectives. For example, GPT-3 receives
distinct goals in different applications and tries to accomplish them as
successfully as possible.

Whatever the exact definition of modern machine intelligence, it is clear
that new digital algorithms are being applied widely to every domain of our
lives. Rather than attempting to arbitrate between different definitions of
machine intelligence, we will use “modern AI” to capture the currently
prevailing approach in this domain,

Applying digital technologies to the production process—for example,
with numerically controlled machinery—long predates modern Al. The



major computing breakthroughs of the past seventy years came from finding
ways of performing tasks using software in areas such as document
preparation, database management, accounting, and inventory control.
Software can also create new production capabilities. In computer-assisted
design, it improves the precision and ease with which workers perform
design tasks. It makes the work of cashiers and other consumer-facing
employees potentially more productive. As we emphasized in Chapter 8, it
also enables automation.

To be automated by traditional software, a task needs to be “routine,”
meaning that it must involve predictable steps that are implemented in a
defined sequence. Routine tasks are performed repetitively, embedded in a
predictable environment. For example, typing is routine. So are knitting and
other simple production tasks that involve a significant amount of repetitive
activity. Software has been combined with machinery that interacts with the
physical world to automate various routine tasks, exactly as Jacquard
intended, and modern numerically controlled equipment, such as printers or
computer-assisted lathes, regularly accomplish this. Software is also an
integral part of robotics technology used extensively for industrial
automation.

But only a small fraction of human tasks is truly routine. Most of the things
our species do involve some amount of problem solving. We deal with new
situations or challenges by coming up with solutions that draw analogies on
the basis of past experience and knowledge. We employ flexibility when the
relevant environment changes constantly. We rely heavily on social
interaction, such as communication and explanation or simply the
camaraderie that many coworkers and customers enjoy in the process of
economic transactions. Collectively, we are a pretty creative species.

Customer service, for example, requires a combination of social and
problem-solving skills. There are tens of thousands of problems a customer
may encounter, some that are rare or entirely idiosyncratic. It is relatively
easy to help a customer who has missed a flight and would like to take the
next available plane. But what if the traveler has ended up in the wrong
airport or now needs to fly to a new destination?

Modern Al approaches have been used to extend automation into a
broader range of routine tasks, such as bank-teller services. Pre-Al
automation—for example, using automated teller machines (ATMs)—was



extensive by the 1990s, with a focus on simple tasks, such as dispensing
cash. Depositing checks was only partially automated. ATMs accepted
deposits, and magnetic-ink-character-recognition technology was used to sort
checks according to their bank code and bank account number. But humans
were still necessary for other routine tasks, such as recognizing handwriting,
organizing accounts, and monitoring overdrafts. Based on more recent
advances in Al-based handwriting-recognition and decision-making tools,
checks can now be processed without human involvement.

More significantly, the ambition of Al is to expand automation to
nonroutine tasks, including customer service, tax preparation, and even
financial advice. Many of the tasks involved in these services are predictable
and can be automated straightforwardly. For example, information from wage
and tax statements (such as the W-2 form in the United States) can be scanned
and automatically entered in the relevant fields to compute tax obligations, or
the relevant information about deposits and balances can be provided to a
bank customer. Recently, Al has ventured into more complex tasks as well.
Sophisticated tax-preparation software can query users about expenses or
items that look suspicious, and customers can be presented with voice-
activated menus to categorize their problem (even if this often works
imperfectly, ends up shifting some of the work to users, and causes longer
delays as customers wait for a human to provide the necessary help).

In robotic process automation (RPA), for example, software implements
tasks after watching human actions in the application’s graphical user
interface. RPA bots are now deployed in banking, lending decisions, e-
commerce, and various software-support functions. Prominent examples
include automated voice-recognition systems and chatbots that learn from
remote IT-support practices. Many experts believe this kind of automation
will spread to myriad tasks currently performed by white-collar workers.
New York Times journalist Kevin Roose summarizes RPAs’ potential as
follows: “Recent advances in A.I. and machine learning have created
algorithms capable of outperforming doctors, lawyers and bankers at certain
parts of their jobs. And as bots learn to do higher-value tasks, they are
climbing the corporate ladder.”

Supposedly, we will all be the beneficiaries of these spectacular new
capabilities. The current CEOs of Amazon, Facebook, Google, and
Microsoft have all claimed that Al will beneficially transform technology in



the next decades. As Kai-Fu Lee, former president of Google China, puts it,
“And like most technologies, Al will eventually produce more positive than
negative impacts on our society.”

The evidence does not fully support these lofty promises, howewver.
Although talk of intelligent machines has been around for two decades, these
technologies started spreading only after 2015. The takeoff is visible in the
amount that firms spend on Al-related activities and in the number of job
postings for workers with specialized Al skills (including machine learning,
machine vision, deep learning, image recognition, natural-language
processing, neural networks, support vector machines, and latent semantic
analysis).

Tracking this indelible footprint, we can see that Al investments and the
hiring of Al specialists concentrate in organizations that rely on tasks that can
be performed by these technologies, such as actuarial and accounting
functions, procurement and purchasing analysis, and various other clerical
jobs that involve pattern recognition, computation, and basic speech
recognition. However, the same organizations also lower their overall hiring
substantially—for example, reducing their postings for all sorts of other
positions.

Indeed, the evidence indicates that Al so far has been predominantly
focused on automation. Moreover, claims that Al and RPAs are expanding
into nonroutine, higher-skilled tasks notwithstanding, most of the burden of
Al automation to date has fallen on less-educated workers, already
disadvantaged by earlier forms of digital automation. Nor is there any
evidence that lower-skilled workers are benefiting from AI applications,
although obviously the people who run these firms see some gain for
themselves and their shareholders.

Reassuringly, Al does not appear fo be advancing so much that it will
creatc mass joblessness. Like the industrial robots we discussed in Chapter
8, current technology thus far can perform only a small set of tasks, and its
impact on employment is limited. Nevertheless, it is heading in a direction
that is biased against workers and is destroying some jobs. Its most major
likely impact is to further lower wages for many people, not create a
completely workless future. The problem is that although Al fails in most of
what it promises, it still manages to reduce the demand for workers.



The Imitation Fallacy

Why, then, all this emphasis on machine intelligence? What we should care
about is whether machines and algorithms are useful to us. For example,
according to most definitions, the global positioning system (GPS) may not
be intelligent because it is based on the implementation of a straightforward
search algorithm (the A* search algorithm, first devised in 1968). Yet GPS
devices do provide a tremendously useful service to humans. Almost no
expert would classify pocket calculators as intelligent, but they perform tasks
that most humans would find impossible (such as quickly multiplying two
seven-digit numbers).

Instead of fixating on machine intelligence, we should ask how useful
machines are to people, which is how we define machine usefulness (MU).
Focusing on MU would guide us toward a more socially beneficial
trajectory, especially for workers and citizens. Before developing this case,
however, we should understand where the current focus on machine
intelligence comes from, which takes us to a vision articulated by the British
mathematician Alan Turing,

Turing was fascinated by machine capabilities throughout his career. In
1936 he made a fundamental contribution to the question of what it means for
something to be “computable.” Kurt Godel and Alonzo Church had recently
tackled the question of how to define the set of computable functions,
meaning the set of functions whose values can be calculated by an algorithm.
Turing developed the most powerful way of thinking about this question.

He imagined an abstract computer, now called a Turing machine, that can
carry out computations according to the inputs specified on a possibly
infinite tape—for example, instructions to implement basic mathematical
operations. He then defined a function to be computable if such a machine
could compute its values. A machine is said to be a universal Turing machine
if it can compute any number that can be calculated by any Turing machine.
Notably, if the human mind is in essence a very sophisticated computer and
the tasks that it performs are within the class of computable functions, then a
universal Turing machine could replicate all human capabilities. Before
World War II, however, Turing did not venture into the question of whether
machines could really think and how far they could go in performing human
tasks.



During the war, Turing joined the top-secret Bletchley Park research
facility, where mathematicians and other experts worked to understand
encrypted German radio messages. He devised a clever algorithm—and
designed a machine—to speed up the breaking of enemy ciphers. This then
helped British intelligence to quickly decipher encrypted communications
that the Germans had presumed to be unbreakable.

After Bletchley, Turing took the next step in his prewar work on
computation. In 1947 he declared to a meeting of the London Mathematical
Society that machines could be intelligent. Undeterred by the hostile
reactions of participants, Turing continued to work on the problem. In 1951
he wrote: “‘You cannot make a machine think for you’ This is a
commonplace that is usually accepted without questton. It will be the
purpose of this paper to question it.”

His seminal 1950 paper, “Computing Machinery and Intelligence,”
defines one notion of what it means for a machine to be intelligent. Turing
imagined an “imitation game” (now called a Turing test) in which an
evaluator engages in a conversation with two entities, one human and one
machine. By asking a series of questions communicated via a computer
keyboard and screen, the evaluator attempts to tell which one is which. A
machine is intelligent if it can evade detection.

No machine is currently intelligent according to this definition, but one
could turn it into a less categorical ranking of machine intelligence. The
better a machine can imitate humans, the more intelligent it is. To make this
operational, one can define the notion of “human parity” at a task, which
would be achieved if a machine can perform that task at least as well as
humans. Then, the more tasks a machine can reach human parity in, the more
intelligent it is.

Turing’s own thoughts on this subject were subtler. He understood that
passing this test might not mean true thinking capacity: “I do not wish to give
the impression that I think there is no mystery about consciousness. There is,
for instance, something of a paradox connected with any attempt to localise
it.” Despite this reservation, the modern field of Al followed in Turing’s
footsteps and focused on artificial intelligence, defined as machines acting
autonomously, reaching human parity, and subsequently outperforming
humans.



Boom and Mostly Bust

Fascination with machine intelligence often leads to exaggeration. The
eighteenth-century French innovator Jacques de Vaucanson would have had a
well-deserved place in the history of technology for his many innovations,
including the design of the first automatic loom and an all-metal-cutting slide
lathe, which was pathbreaking for the early machine-tool industry. Yet today
he is remembered as a fraudster for his “digesting duck,” which flapped its
wings, ate, drank, and defecated. It was all an illusion, with food and water
going into one of the many compartments, which then released already
digested food as excrement.

Soon after de Vaucanson’s duck came the Hungarian inventor Wolfgang
von Kempelen’s Mechanical Turk, an automated chess-playing machine,
whose name originated from the life-size model sitting on top, dressed in an
Ottoman robe and turban. The Turk defeated many notable chess players,
including Napoleon Bonaparte and Benjamin Franklin; solved the well-
known chess puzzle, where a knight must move around touching each square
of the board once and only once; and even responded to questions using a
letter board. Its success, unfortunately, was thanks to an expert chess player
concealed inside the structure.

Claims that machines would soon replicate human intelligence generated
great hype in the 1950s as well. The defining event, the first step in the
current Al approach and the origin of the term artificial intelligence, was a
1956 conference at Dartmouth College, funded by the Rockefeller
Foundation. Brilliant young scientists working on related topics convened at
Dartmouth during the summer. Herbert Simon, a psychologist and an
economist who was later awarded the Nobel Prize, captured the optimism
when he wrote that “machines will be capable, within twenty years, of doing
any work a man can do.”

In 1970 Marvin Minsky, co-organtzer of the Dartmouth conference, was
still confident when speaking to Life magazine:

In from three to eight years we will have a machine with the general
intelligence of an average human being. I mean a machine that will be
able to read Shakespeare, grease a car, play office politics, tell a joke,
have a fight. At that point the machine will begin to educate itself with



fantastic speed. In a few months it will be at gentus level and a few
months after that its powers will be incalculable.

These hopes of human-level intelligence, sometimes also called “artificial
general intelligence” (AGI), were soon dashed. Tellingly, nothing of great
value came from the Dartmouth conference. As the spectacular promises
made by Al researchers were all unmet, funding for the field dried up, and
what came to be called the first “Al winter” set in.

There was renewed enthusiasm in the early 1980s based on advances in
computing technology and some limited success of expert systems, which
promised to provide expert-like advice and recommendations. A few
successful applications were developed in the context of identifying
infectious diseases and some unknown molecules. Soon, c¢laims about
artificial intelligence reaching human-level expertise were circulating again,
and funding resumed. By the end of the 1980s, a second Al winter was upon
the field because the promises were again unfulfilled.

The third wave of euphoria started in the early 2000s, focusing on what is
sometimes called “narrow Al where the objective is to develop mastery in
specific tasks, such as identifying an object in pictures, translating text from a
different language, or playing a game such as chess or Go. Reaching or
surpassing human parity remained the overarching objective.

This time, rather than mathematical and logic-based approaches intended
to replicate human cognition, researchers turned various human tasks into
prediction or classification problems. For example, recognizing an image can
be conceived as predicting which one of a long list of categories the image
belongs to. Al programs can then rely on statistical techniques applied to
massive data sets to make increasingly accurate classifications. Social media
messages that pass among billions of people are an exemplar of this type of
data.

Take the problem of recognizing whether there is a cat in a picture. The
old approach would have required a machine to model the complete
decision-making process used by humans to spot cats. The modern approach
bypasses the step of modeling or even understanding how humans make
decisions. Instead, it relies on a large data set of humans making correct
recognition decisions based on images. It then fits a statistical model to large
data sets of image features to predict when humans say that there is a cat in



the frame. It subsequently applies the estimated statistical model to new
pictures to predict whether there is a cat there or not.

Progress was made possible by faster computer processor speed, as well
as new graphics processing units (GPUs), originally used to generate hi gh-
resolution graphics in video games, which proved to be a powerful tool for
data crunching. There have also been major advances in data storage,
reducing the cost of storing and accessing massive data sets, and
improvements in the ability to perform large amounts of computation
distributed across many devices, aided by rapid advances in
microprocessors and cloud computing,

Equally important has been progress in machine learning, especially
“deep learning,” by using multilayer statistical models, such as neural
networks. In traditional statistical analysis a researcher typically starts with
a theory specifying a causal relationship. A hypothesis linking the valuation
of the US stock market to interest rates is a simple example of such a causal
relationship, and it naturally lends itself to statistical analysis for
investigating whether it fits the data and for forecasting future movements.
Theory comes from human reasoning and knowledge, often based on
synthesis of past insights and some creative thinking, and specifies the set of
possible relationships among several variables. Combining this theory with a
relevant data set, researchers fit a line or a curve to a cloud of points in their
data set and make inferences and forecasts on the basis of these estimates.
Depending on the success of this first approach, there will be additional
human input in the form of a revised theory or a complete change of focus.

In contrast, in modern Al applications the inquiry does not start with
clear, causal hypotheses. For example, researchers do not specify which
characteristics in the digital version of an image are relevant for recognizing
it. Multilayer models, applied to vast amounts of data, attempt to compensate
for this lack of prior hypotheses. Each different layer may primarily deal
with a different level of abstraction; one layer may represent the edges of the
picture and identify its broad outlines, whereas another one may focus on
other aspects, such as whether an eye or a paw is present in there. These
sophisticated tools notwithstanding, without human-machine collaboration, it
is difficult to draw the right inferences from data, and this deficiency
motivates the need for ever greater amounts of data and computational power
to find patterns.



Typical machine-learning algorithms start by fitting a flexible model to a
sample data set and then making predictions that are applied to a larger data
set. In image recognition, for example, a machine-learning algorithm can be
trained on a sample of tagged images that may indicate whether the image
contains a cat. This first step leads to a model that can make predictions on a
much larger data set, and the performance of these predictions fuels the next
round of algorithmic improvements.

This new Al approach has already had three important implications. First,
it has intertwined Al with the use of massive quantities of data. In the words
of an Al scientist, Alberto Romero, who became disillusioned with the
industry and left it in 2021, “If you work in Al you are most likely collecting
data, cleaning data, labeling data, splitting data, training with data, evaluating
with data. Data, data, data. All for a model to say: /ts a cat.” This focus on
vast quantities of data is a fundamental consequence of the Turing-inspired
emphasis on autonomy.

Second, this approach has made modern Al appear highly scalable and
transferable, and of course, in domains much more interesting and important
than recognizing cats. Once the problem of recognizing cats in a picture is
“solved,” we can move on to doing the same for more complex image-
recognition tasks or to seemingly unrelated problems, such as determining the
meaning of sentences in a foreign language. The potential, therefore, is for
truly pervasive use of Al in the economy and in our lives—for good but often
also for bad.

In the extreme, the aim becomes the development of completely
autonomous, general intelligence, which can do everything that humans can
do. In the words of DeepMind cofounder and CEO Demis Hassabis, the
objective 1s “solving intelligence, and then using that to solve everything
else.” But is this the best way to develop digital technologies? This question
typically remains unasked.

Third and more problematically, this approach has pushed the field even
further in the direction of automation. If machines can be autonomous and
intelligent, then it is natural for them to take over more tasks from workers.
Companies can break down existing jobs into narrower tasks, use Al
programs and abundant data to learn from what humans do, and then
substitute algorithms for humans in these tasks.



An elitist vision boosts this focus on automation. Most humans, according
to proponents of this view, are error-prone and not very good at the tasks
they perform. As one Al website states, “Humans are naturally prone to
making mistakes.” On the other hand, there are some very talented
programmers who could design sophisticated algorithms. As Mark
Zuckerberg puts it, “Someone who is exceptional in their role is not just a
little better than someone who is pretty good. They are 100 times better.” Or
in the words of Netscape cofounder Marc Andreessen, “Five great
programmers can completely outperform 1,000 mediocre programmers.”
Based on this worldview, it is desirable to use top-down design of
technology by exceptional talent to limit human mistakes and their costs in
workplaces. Replacing workers with machines and algorithms then becomes
acceptable, and collecting massive amounts of data about people comes to be
viewed as tolerable. This approach further justifies reaching human parity,
rather than complementing humans, as the criterion for progress and
comfortably fits with the emphasis of corporations on cutting labor costs.

The Underappreciated Human

Even with displacement and massive data collection, productivity growth
from new technologies can sometimes increase demand for workers and
boost their earnings. But benefits for workers appear only when new
technologies substantially increase productivity. Today, this is a serious
concern because Al has so far brought a lot of so-so automation, with limited
productivity benefits.

When productivity increases substantially, this can undo some of the
negative effects of automation—for example, by increasing demand for labor
in nonautomated tasks or stimulating employment in other sectors that expand
subsequently. However, if cost reductions and productivity gains are small,
these beneficial effects will not take place. So-so automation is particularly
troublesome because it displaces workers but fails to deliver in terms of
productivity.

In the age of Al there is a fundamental reason for so-so automation.
Humans are good at most of what they do, and Al-based automation is not
likely to have impressive results when it simply replaces humans in tasks for
which we accumulated relevant skills over centuries. So-so automation is



what we get, for example, when companies rush to install self-checkout
kiosks that do not work well and do not improve service quality for
customers. Or when skilled customer-service representatives, IT specialiss,
or financial advisers are sidelined by Al algorithms, which then perform
badly.

Many of the productive tasks performed by humans are a mixture of
routine and more complex activities that involve social communication,
problem solving, flexibility, and creativity. In such activities, humans draw
on tacit knowledge and expertise. Moreover, much of this expertise is highly
context dependent and difficult to transfer to Al algorithms, thus likely to get
lost once the relevant tasks are automated.

To illustrate the importance of accumulated knowledge, take the foraging
societies we discussed in Chapter 4. Ethnographic studies show that hunter-
gatherers consistently have a remarkable degree of adaptation to local
conditions. For instance, cassava (also known as manioc) is a highly
nutritious tuber plant originating in the American tropics. It is used for
making cassava flour, breads, tapioca, and various alcoholic beverages. The
plant is poisonous, however, because it contains two cyanide-producing
sugars. If it is eaten raw or cooked without being properly processed, it can
cause cyanide intoxication, with severe consequences in extreme cases,
including death.

Indigenous peoples in the Yucatan figured out this problem and developed
several practices to remove the poison, including peeling the plant and
soaking it for a while before cooking it for a long time, and then disposing of
the cooking water. Some Europeans at first did not understand these methods
and sometimes interpreted them as primitive, nonscientific traditions, only to
find out the perilous costs of not following them.

Human adaptability and ingenuity are no less important in the modern
economy, though often ignored by technology-minded elites. There is a strong
consensus among city planners and engineers that traffic lights are key to the
safe and timely flow of cars. In September 2009 the coastal English town of
Portishead turned off the traffic lights at one of its busiest intersections.
Against the fears of many experts, drivers started using more common sense
and responded adaptively to this new organization. At the end of four weeks,
traffic flow had improved significantly at the intersection, with no increase in
accidents or injuries. Portishead is no outlier. Several other experiments with



such “naked streets” show similar results. There is a debate on the
practicality of naked streets in large cities, and a complete lack of traffic
lights is unlikely to be workable at the busiest intersections in megacities.
Nevertheless, it is hard not to conclude from these experiments that
technology, by taking away initiative and judgment from humans, sometimes
makes things worse, not better.

The same is true when it comes to production tasks. Human intelligence
derives its strength from being situational and social: The ability to
understand and successfully respond to one’s environment, enabling
individuals to fluidly adapt to changing conditions. For example, people can
be more alert when they are in an unfamiliar environment that provides subtle
cues of danger, even while resting or in their sleep. In other environments
they perceive as predictable, they can perform tasks faster using learned
routines. It is also situational intelligence that helps people respond to
changing circumstances more broadly and recognize faces and patterns, using
inputs from multiple relevant contexts.

Human intelligence is also social in three important ways. First, a lot of
the necessary information for successful problem solving and adaptation
resides in the community. We acquire it via implicit and explicit
communication—for example, by imitating others’ behavior. Interpreting this
type of external knowledge is a vital part of human cognition and is the basis
of the emphasis on the “theory of the mind” in this area. Theory of the mind is
what enables humans to reason about others’ mental state and thus correctly
understand their intentions and knowledge.

Second, our reasoning is based on social communication; we develop
arguments and counterarguments in favor of different hypotheses and evaluate
our understanding in light of this process. Humans would be terrible decision
makers without this social dimension of intelligence. Yes, we make mistakes
when placed into lab settings that prevent these aspects of intelligence from
being activated, but we avoid some of the same mistakes in more natural
settings.

Third, humans gain additional skills and capabilities from the empathy
they have for others and the sharing of goals and objectives that this enables.

The central role of the situational and social dimensions of intelligence is
related to the weak relationship between analytic aspects of human cognition,
as measured by [Q tests, and various dimensions of success. Even in



scientific and technical fields, individuals who are the most successful are
those who combine moderately high IQ with social skills and other human
capabilities.

In most work environments, situational and social intelligence enables not
just flexible adaptation to circumstances but also communication with
customers and other employees to improve service quality and reduce
mistakes. It is therefore not surprising that despite the spread of Al
technologies, many companies are increasingly seeking workers with social,
rather than mathematical or technical, skills. At the root of this growing
demand for social skills is the reality that neither traditional digital
technologies nor Al can perform essential tasks that involve social
interaction, adaptation, flexibility, and communication.

All the same, ignoring human capabilities can become a self-fulfilling
prophecy because automation decisions can gradually reduce the scope for
social interaction and human learning. Take customer service again as an
example. Well-trained humans can be very effective in dealing with
problems, precisely because they form a social bond with the person needing
help (for instance, sympathizing with somebody who just had an accident and
needs to file a claim). They can quickly understand the nature of their
problem, partly because they are communicating with the customer, and come
up with solutions that fit the needs on the basis of this communication. These
interactions further enable customer-service representatives to get better at
their job over time.

Now imagine the situation after the job of customer service is broken into
narrower tasks and the front-end ones are assigned to algorithms, which will
often fail to fully identify and deal with the complex problems they encounter.
Humans are then brought in as troubleshooters, after a long series of menus.
At this point, the customer is often frustrated, early opportunities for building
a social bond have been lost, and the customer-service representative does
not get the same extent of information from communication, limiting their
ability to learn from and adapt to the specific circumstances. This makes the
customer-service representative less effective and may encourage managers
and technologists to seek additional ways of reducing the tasks allocated to
them even further.

These lessons about human intelligence and adaptability are ofien ignored
in the AI community, which rushes to automate a range of tasks, regardless of



the role of human skill.

The trivmph of Al in radiology is much trumpeted. In 2016 Geoffrey
Hinton, cocreator of modern deep-learning methods, Turing Award winner,
and Google scientist, suggested that “people should stop training radiologists
now. It’s just completely obvious that within five years deep learning is
going to do better than radiologists.”

Nothing of the sort has yet happened, and demand for radiologists has
increased since 2016, for a very simple reason. Full radiological diagnosis
requires even more situational and social intelligence than, for example,
customer service, and it is currently beyond the capabilities of machines. In
fact, recent research shows that combining human expertise with new
technology tends to be much more effective. For example, state-of-the-art
machine-learning algorithms can improve the diagnosis of diabetic
retinopathy, which results from damage to blood vessels on the retina among
diabetic patients. Nevertheless, accuracy increases significantly more when
algorithms are used to identify difficult cases, which are then assigned to
ophthalmologists for better diagnosis.

The chief technology officer of Google’s self-driving car division
confidently expected in 2015 that his then-eleven-year-old son would not
need to get a driver’s license by the time he turned sixteen. In 2019 Elon
Musk predicted that Tesla would have one million fully automated,
driverless taxicabs on the streets by the end of 2020. These predictions have
not come to pass for the same reason. As the naked-streets experiment
emphasized, driving in busy cities requires a tremendous amount of
situational intelligence to adapt to changing circumstances, and even more
social intelligence to respond to cues from other drivers and pedestrians.

General Al Illusion

The apogee of the current Al approach inspired by Turing’s ideas is the quest
for general, human-level intelligence.

Despite tremendous advances such as GPT-3 and recommendation
systems, the current approach to Al is unlikely to soon crack human
intelligence or even achieve very high levels of productivity in many of the
decision-making tasks humans engage in. Tasks that involve social and
situational aspects of human cognition will continue to pose formidable



challenges for machine intelligence. Once we look at the details of what has
been achieved, the difficulty of translating existing successes to most human
tasks becomes clear.

Take the most vaunted successes of Al, such as the AlphaZero chess
program, discussed in Chapter 1. AlphaZero is even argued to be “creative”
because it has come up with moves that human chess masters had not
considered or seen. Nevertheless, this is not true intelligence. To start with,
AlphaZero is an extremely specialized program and can play only chess and
other similar games. Even the simplest tasks beyond chess, such as simple
arithmetic or playing games with more social interaction, are beyond
AlphaZero’s capabilities. Worse, there is no obvious way in which
AlphaZero’s architecture can be adapted to do many of the simple things
humans do, such as drawing analogies, playing games that have less-strict
rules, or learning a language, which is done masterfully by hundreds of
millions of one-year-olds every year.

AlphaZero’s intelligence within chess is also very specific. Although
AlphaZero’s chess moves within the rules of the game are impressive, they
do not involve the type of creativity that humans regularly engage in—such as
drawing analogies across unstructured, disparate environments and coming
up with solutions to new and varied problems.

Even GPT-3, though more versatile and impressive than AlphaZero,
shows the same limitations. It cannot perform tasks beyond those for which it
has been pretrained and shows no judgment, so conflicting or unusual
instructions can stump it. Worse, this technology has no element of the social
or situational intelligence of humans. GPT-3 cannot reason about the context
in which the tasks it is performing are situated and draw on causal
relationships that exist between actions and effects. As a result, it sometimes
misunderstands even simple instructions and has little hope of responding
adequately to changing or completely new environments.

Indeed, this discussion illustrates a broader problem. Statistical
approaches used for pattern recognition and prediction are ill-suited to
capturing the essence of many human skills. To start with, these approaches
will have difficulty with the situational nature of intelligence because the
exact situation is difficult to define and codify.

Another perennial challenge for statistical approaches is “overfitting,”
which is typically defined as using more parameters than justified for fitting




some empirical relationship. The concern is that overfitting will make a
statistical model account for irrelevant aspects of the data and then lead to
inaccurate predictions and conclusions. Statisticians have devised many
methods to prevent overfitting—for example, developing algorithms on a
different sample than the one in which they are deployed. Nevertheless,
overfitting remains a thorn in the side of statistical approaches because it is
fundamentally linked to the shortcomings of the current approach to Al lack
of a theory of the phenomena being modeled.

To explain this problem, it is useful to have a broader understanding of
the overfitting problem, based on using irrelevant or nonpermancit features
of an application. Consider the task of distinguishing wolves from huskies.
Although humans are excellent at this task, it turns out to be a difficult one for
Al. When some algorithms managed to achieve good performance, it was
later understood that this was thanks to overfitting: huskies were recognized
from urban backgrounds, such as nice lawns and fire hydrants, and wolves
from natural backgrounds, such as snowy mountains. These are irrelevant
characteristics in two fundamental senses. First, humans do not rely on these
backgrounds for defining or distinguishing the animals. Second, and more
troublingly, as the climate warms, wolves’ habitats may change, or wolves
may need to be identified in different settings. In other words, because the
background is not a defining characteristic of wolves, any approach that
relies on it will lead to mistaken predictions as the world evolves or the
context changes.

Overfitting ts particularly troublesome for machine intelligence because it
creates a false sense of success, when the machine is in reality performing
badly. For instance, a statistical association between two variables, say
temperature and GDP per capita across countries, does not necessarily
indicate that climate has a sizable impact on economic development. It may
simply result from how European colonialism impacted areas with different
climatic conditions and in different parts of the globe during a specific
historical process. But without the right theory, it is easy to confuse causation
and correlation, and machine learning often does this.

The overfitting problem becomes much worse when algorithms are
dealing with an inherently social situation where humans react to new
information. Human responses will mean that the relevant context evolves
frequently, or it may change because of the actions they take on the basis of



the information that algorithms provide. Let us give an economic illustration.
An algorithm may observe the mistakes a person makes when looking for a
job—for example, seeking occupations that have few job postings relative to
the number of people applying to them—and may try to correct them.
Procedures developed against overfitting, such as separating the training and
the testing samples, do not remove the relevant overfitting problem: both
samples may be adapted to a particular environment in which there are many
unfilled vacancies in the retail sector. But this might change over time
precisely because we are dealing with a social situation where humans
respond to the available evidence. For instance, as individuals are
encouraged by algorithms to apply to them, retail jobs may become
oversubscribed and no longer as attractive. Without fully understanding this
situational and social aspect of human cognition and how behavior changes
dynamically, overfitting will continue to bedevil machine intelligence.

There are other troubling implications of AI's lack of social intelligence.
Although it uses data from a large community of users and thus can embed the
social dimension of data, with existing approaches it does not leverage the
fact that human understanding is founded on selective imitation,
communication, and argumentation between people. As a result, many
automation attempts appear to reduce, rather than increase, flexibility, which
well-trained workers can achieve by rapidly and fluidly responding to
changing circumstances, often leveraging skills and perspectives they learn
from their coworkers.

Of course, these arguments do not rule out the possibility that a
completely new approach can crack the problem of AGI in the near future.
Yet there is so far no indication that we are close to coming up with such an
approach. Nor is this the main area in which Al dollars are being invested.
Industry’s focus continues to be on extensive data collection and the
automation of narrow tasks based on machine-learning techniques.

The economic problem from this business strategy is clear: when humans
are not as useless as sometimes presumed and intelligent machines not as
intelligent as typically assumed, we get so-so automation—all the
displacement and little of the promised productivity gains. In fact, even the
companies themselves do not benefit much from this automation, and some of
the Al adoption may be because of hype, as the former Al scientist Alberto
Romero, whom we quoted earlier, noted: “The marketing power of Al is



such that many companies use it without knowing why. Everyone wanted to
get on the Al bandwagon.”

The Modern Panopticon

Another popular use of modern AT illustrates how enthusiasm for autonomous
technology, together with massive data collection, has forged a very specific
direction for digital technologies and how it has again caused modest gains
for corporations and significant losses for society and workers.

The use of digital tools for worker monitoring is nothing new. When the
social psychologist and business scholar Shoshana Zuboff interviewed
workers experiencing the introduction of digital technologies in the early
1980s, a common refrain was about the intensification of monitoring by
management. As one office worker put it, “The ETS [digital expense tracking
system] has become a vehicle for management to check up on us. They can
pick up any changes on a minute-by-minute basis if they want to.”

But earlier efforts pale in comparison to what we see today. Amazon, for
example, collects a huge amount of data about its delivery workers and
warehouse employees, which are then combined with algorithms for
restructuring work in a way that increases throughput and minimizes
disruptions.

The company, which is the second-largest private-sector employer in the
United States, pays higher minimum wages than several other retailers, such
as Walmart. But there is a fundamental sense in which Amazon jobs are not
good jobs. Workers must abide by strict, fast-paced work routines and are
continuously monitored to make sure that they are not taking longer or more
frequent breaks and are exerting the required effort at all times. Recent news
reports reveal that a sizable proportion of workers from many facilities are
fired for not meeting these work expectations, and some of these terminations
are automatic, based on the data collected (although Amazon disputes that
there are automatic terminations). In the words of a labor advocate, “One of
the things we hear consistently from workers is that they are treated like
robots in effect because they’re monitored and supervised by these automated
systems.”

Jeremy Bentham’s panopticon was meant to be a model not only for
prisons but also for early British factories. But eighteenth- and nineteenth-



century bosses did not have the technology for constant surveillance. Amazon
does. In the words of one New Jersey employee, “They basically can see
everything you do, and it’s all to their benefit. They don’t value you as a
human being. It’s demeaning.”

These high-monitoring environments are not just demeaning but also
dangerous. A recent OSHA report finds that in 2020, Amazon warehouse
workers suffered about 6 serious injuries per 200,000 hours worked, nearly
twice as high as the average in the warehousing industry, and other studies
tind even higher injury rates, especially in peak business times such as the
Christmas season, periods during which monitoring of workers intensifies.
Amazon additionally requires its delivery employees and contractors to
download and continuously run a data tracking app called “Mentor,” which
enables closer monitoring. The company recently announced additional Al
tools for tracking delivery workers. FedEx and other delivery services also
collect a lot of data from their employees and use these for imposing strict
scheduling constraints, which explains why many delivery workers are
perpetually in a race against time.

Extensive data collection is now spreading to white-collar occupations,
with employers tracking how employees use their time on computers and
various communication devices.

Some amount of monitoring is part of the prerogative of an employer, who
needs to ensure that workers perform the tasks assigned to them and do not
damage or misuse machinery. Traditionally, however, workers used to be
motivated not just by monitoring but also by the goodwill that developed
between them and their employer because of high wages and the general
amenities of the workplace. For instance, an employer or a supervisor could
recognize that the worker might not be feeling fully well on a given day and
cut them some slack, or, conversely, employees could be willing to work
harder than usual when the need arose on an occasional basis. Monitoring
enables employers to cut wages and get more work out of the workers. In this
way, monitoring is a “rent-shifting activity,” meaning that it can be used to
prevent sharing of productivity gains and to shift rents away from workers,
without improving their productivity much or at all.

Another domain in which Al methods have been deployed for rent shifting
is work scheduling. A key source of autonomy for workers is a clear
separation between work and leisure time, and predictable scheduling. Take



employees at fast-food restaurants. If they know that they must come to work
at 8 a.m. and leave at 4 p.m., this gives them a high degree of predictabi lity
and some amount of autonomy beyond this eight-hour window. But what
happens if the manager suddenly finds out that there will be many more
customers coming after 4 p.m.? She may have an incentive to reduce this
autonomy and order employees to stay past 4 p.m. Can she do that?

The answer depends on countervailing powers—for example, collective
agreements preventing such impositions; on goodwill and norms of what is
acceptable in workplaces; and on technology, which determines whether
companies can predict demand in advance and arrange real-time scheduling.

Countervailing powers were already absent, especially in the service
industry, and goodwill and norms of respect for worker autonomy had long
subsided. The remaining barrier, technology, has now been overcome with
Al and massive data collection, paving the way to “flexible scheduling.”

Many customer-facing industries have abandoned predictable schedules,
such as 8 a.m.—4 p.m. work hours, adopting instead a combination of “zero-
hour contracts” and real-time schedule changes. Zero-hour contracts mean
that the company rescinds the commitment that it will employ and pay the
worker for regular hours every week. Real-time scheduling, on the other
hand, allows companies to call employees on their cell phone the night
before asking them to be at work early the following morning or extend their
regular hours into longer workdays. It also includes canceling shifts at short
notice, which reduces worker income.

Both are rooted in data-crunching and Al technologies—for example,
scheduling software offered by tech companies such as Kronos—that enable
employers to predict the demand they are going to face and then compel the
workers to adapt to it. An extreme version of these practices is “clopening,”
the name given to the practice of the same employee closing late one evening
and then opening the store early the following morning. This is once again
imposed on workers, often at the last moment, as the managers, empowered
by Al tools, see it fitting their needs.

There are many parallels between flexible scheduling practices and
worker monitoring. The most important is that they are both examples of so-
so technologies: they create little productivity gains, despite substantial costs
for workers. With additional monitoring, companies can abandon efforts to
build goodwill and cut wages. But this does not increase productivity by



much: workers do not become better at their job because they are being paid
less, and in fact may lose motivation and become less productive. With
flexible scheduling, companies can increase their revenues a little by having
more employvees when the demand is high and fewer when the store is less
busy. In both cases, the burden on workers is more substantial than the
productivity benefits. In the words of a British worker employed with a zero-
hour contract, “There is no career progression.... [I’ve] been in the job for
six and a half years. Since then the role hasn’t changed, no promotion. I’ve
got no promotional prospects at all. I asked if I could perhaps go on a course,
and I got an absolute no for that one.” No matter the costs on workers and the
small, ephemeral productivity gains, companies intent on cost cutting and
increasing control over workers are continuing to demand Al technologies,
and in response researchers beholden to the Al illusion are supplying them.

But is there another way than using digital technologies in the service of
ceaseless automation and worker monitoring? The answer is yes. When
digital technologies are steered toward helping and complementing humans,
the results can be, and have been, much better.

A Road Not Taken

When interpreting both recent and distant history, there is often a
deterministic fallacy: what happened had to happen. Often, this is not
accurate. There are many possible paths along which history could have
evolved. The same is true for technology. The current approach that
dominates the third wave of Al based on massive data harvesting and
ceaseless automation is a choice. It is in fact a costly choice, not just because
it is following the bias of elites toward automation and surveillance, and
damaging the economic livelihood of workers. It is also diverting energy and
research away from other, socially more beneficial directions for general-
purpose digital technologies. We will next see that paradigms prioritizing
machine usefulness have had some remarkable successes in the past when
tried and offer many fruitful opportunities for the future.

Even before the Dartmouth conference, MIT polymath Norbert Wiener
had articulated a different vision, one that positioned machines as
complements to humans. Although Wiener did not use the term, MU (machine
usefulness) is inspired by his ideas. What we want from machines is not



some amorphous notion of intelligence or “high-level capabilities” but their
use for human objectives. Focusing on MU, rather than Al, is more likely to
get us there.

Wiener identified three critical issues that have stymied dreams of
autonomous machine intelligence since Turing. First, surpassing and
replacing humans is difficult because machines are always imperfect at
imitating living organisms. As Wiener put it in a slightly different context,
“The best material model for a cat is another, or preferably the same cat.”

Second, automation had an immediate negative effect on working people:
“Let us remember that the automatic machine, whatever we think of any
feelings it may have or may not have, is the precise economic equivalent of
slave labor. Any labor which competes with slave labor must accept the
economic consequences of slave labor.”

And finally, the drive for automation also meant that scientists and
technologists could lose control over the path of technology. “It is necessary
to realize that human action is a feedback action” means that we adjust what
we do based on information about what is happening around us. But “when a
machine constructed by us is capable of operating on its incoming data at a
pace which we cannot keep, we may not know, until it is too late, when to
turn it off.” None of this was inevitable, however: machines could be
harnessed to the service of humans as a complement to our skills. As Wiener
wrote in an article drafted in 1949 for the New York Times (parts of it were
published posthumously in 2013), “We can be humble and live a good life
with the aid of the machines, or we can be arrogant and die.”

Two visionaries picked up Wiener’s torch. The first was J. C. R.
Licklider, who focused on encouraging others to adopt and develop this
approach in productive ways. Originally trained as a psychologist, Licklider
subsequently moved into information technology, and he proposed ideas that
would become critical for networked computers and interactive computing
systems. A clear articulation of this vision is contained in his 1960
pathbreaking article, “Man-Computer Symbiosis.” Licklider’s analysis is
still relevant today, more than sixty years after its publication, especially in
his emphasis that “relative to men, computing machines are very fast and
very accurate, but they are constrained to perform only one or a few
elementary operations at a time. Men are flexible, capable of ‘programming
themselves contingently’ on the basis of newly received information.”



The second proponent of this alternative vision, Douglas Engelbart, also
articulated ideas that are precursors to our notion of machine usefulness.
Engelbart strove to make computers more usable and easier to operate for
nonprogrammers, based on his belief that they would be most transformative
when they were “boosting mankind’s capability for coping with complex,
urgent problems.”

Engelbart’s most important innovations were revealed in spectacular
fashion in a show that was later christened as the “Mother of All Demos.” At
a conference organized by the Association for Computer Machinery, jointly
with the Institute for Electrical and Elecironics Engineers on December 9,
1968, Engelbart introduced the prototypical computer mouse. This
contraption, consisting of a big roller, a wooden-carved frame, and a single
button, looked nothing like the computer mouse we are used to today, but
with wires sticking from its back, it did look enough like a rodent to get the
name. It transformed what most users could do with computers at one fell
swoop. It was also the innovation that propelled Steve Jobs and Steve
Wozniak’s Macintosh computers ahead of PCs and operating systems based
on Microsoft. Other Engelbart innovations, some of them also showcased at
the Mother of All Demos, include hypertext (which now powers the internet),
bitmapped screens (which made various other interfaces feasible), and early
forms of the graphical user interface. Engelbart’s ideas continued to generate
several other advances, especially under the auspices of the Xerox company
(and many of these ideas were again critical for Macintosh and other
computers).

Wiener, Licklider, and Engelbart’s alternative vision laid the foundations
of some of the most fruitful developments in digital technology, even if today
this vision is overshadowed by the Al illusion. To understand these
achievements, and why they have not received as much attention as the
successes of the dominant paradigm, we first need to discuss how MU works
in practice.

Machine Usefulness in Action

We can distinguish four related but distinct ways in which digital
technologies can be steered in the direction of MU, helping and empowering
humans.



First, machines and algorithms can increase worker productivity in tasks
they are already performing. When a skilled artisan is given a better chisel or
an architect has access to computer-aided design software, their productivity
can increase significantly. Such productivity increases need not just come
from new tools and can also be accomplished by improving machine design.
This 1s the aspiration of the fields known as human-computer interaction and
human-centered design. These approaches recognize that all machines, and in
particular computers, need to have certain features to be most productively
used by people, and they prioritize designing new technologies that increase
human convenience and usability. When successful, as was Engelbart’s
mouse and graphic user interface, new digital technologies can be what Steve
Jobs referred to as “a bicycle for our minds” and expand human skills.
Because this approach puts machine capabilities at the service of people, it
tends to complement human intelligence.

Although this approach has already generated notable benefits, much more
can be done. Virtual- and augmented-reality tools hold tremendous promise
to increase human capabilities in tasks such as planning, design, inspection,
and training. But applications can go beyond technical and engineering jobs.

The current consensus in the technology and engineering community is
summarized by Kai-Fu Lee: “Robots and Al will take over the
manufacturing, delivery, design and marketing of most goods.” Such claims
notwithstanding, as we saw in Chapter 8, efforts to deploy new software
tools have been an important source of productivity growth in the context of
the German Industry 4.0 program, which has enabled greater flexibility in the
face of changing circumstances or demands.

This potential is even better illustrated by Japanese manufacturing, where
many companies have prioritized flexibility and worker participation in
decision making, even as advanced and sometimes automated machinery has
been introduced. This approach was pioneered by W. Edwards Deming,
another engineer following the same vision as Wiener, Licklider, and
Engelbart. Deming was instrumental in setting up a quality-centered, flexible
production approach in Japanese manufacturing. In return, he received the
highest honors in Japan, and the Deming Prize has been established in his
name. Augmented and virtual reality currently provides many new avenues
for this type of human-machine collaboration, including improved




capabilities for precision work by humans, more adaptive designs, and
greater flexibility in responding to changing circumstances.

The second type of MU is even more important and was our focus in
chapters 7 and 8: the creation of new tasks for workers. These tasks were
critical for expanding the demand for both skilled and unskilled workers
even as manufacturers such as Ford automated parts of the production
process, reorganized work, and ftransitioned to mass production. Digital
technologies have also created various new technical and design tasks over
the last half century (even if most companies have prioritized digital
automation). Augmented and virtual reality can also generate more new tasks
in the future. Education and health care provide a vivid illustration of how
algorithmic advances can introduce new tasks. More than four decades ago,
[saac Asimov noted the problem of our current system of education: “Today,
what people call learning is forced on you. Everyone is forced to learn the
same thing on the same day at the same speed in class. But everyone is
different. For some, class goes too fast, for some too slow, for some in the
wrong direction.” When Asimov wrote these words, his proposal for
personalized teaching was purely aspirational. Short of one-on-one teaching
for all students, there was little possibility for such personalization. Today,
we have the tools for making personalization a reality in many classrooms.
Indeed, it should be possible to reconfigure existing digital technologies for
this purpose. The same statistical techniques used for task automation can
also be used for identifying in real time groups of students who have
difficulties with similar problems, as well as students who can be exposed to
more advanced material. The relevant content can then be adjusted for small
groups of students. Evidence from the field of education research indicates
that such personalization has considerable return and is most useful where
exactly society has the greatest need: improving the cognitive and social
skills of students from low socioeconomic backgrounds.

The situation in health care is similar: the right type of MU can
significantly empower nurses and other health care professionals, and this
would be most useful in primary health, prevention, and low-tech medical
applications.

The third contribution of machines to human capabilities may be even
more relevant in the near future. Decision making is almost always
constrained by accurate information, and even human creativity relies on



accessing accurate information in a timely fashion. Most creative tasks
require drawing analogies, finding new combinations of existing methods and
designs. People doing this work then come up with previously untried
schemes that are confronted with evidence and reasoning, and are
subsequently further refined. All these human tasks can be helped by accurate
filtering and the provision of useful information.

The World Wide Web, often associated with the British computer scientist
Tim Berners-Lee, is a quintessential example of this type of aid to human
cognition. By the late 1980s, the internet, the global network of computers
communicating with one another, had been around for about two decades, but
there was no easy way of accessing the trove of information that existed in
this network. Berners-Lee, together with Belgian computer scientist Robert
Cailliau, extended Engelbart’s hypertext idea and introduced hyperlinks to
allow information on one site to be linked to the relevant information on
other parts of the internet. The two scientists wrote the first web browser to
retrieve this information, and named it the World Wide Web or simply the
Web. The Web is a milestone in human-machine complementarity: it enables
people to access information and wisdom that other humans have produced to
a degree essentially unparalleled in the past.

MU can enable many more applications that provide better information to
people in their capacities as workers, consumers, and c¢itizens.
Recommendation systems, at their best, have this ability: they can aggregate
masses of information from others and present relevant aspects to users to
aid in their decision making.

The fourth category, based on the use of digital technologies to create new
platiorms and markets, may turn out to be the most important application of
the Wiener-Licklider-Engelbart vision. Economic productivity is inseparable
from cooperation and trading. Bringing together people with different skills
and endowments has always been a major aspect of economic dynamism and
can be powerfully expanded by digital technologies.

A brilliant illustration of this phenomenon is provided by the fishing
industry in the southern Indian state of Kerala, which was revolutionized by
the use of mobile phones. In some local beach markets in Kerala, fishermen
would come in with a good catch of fish but would encounter insufficient
demand, driving the price to zero and leaving a lot of the fish to rot. A few
kilometers away, a different beach market would have few fish for sale and



many buyers, leading to high prices, unmet demand, and widespread
inefficiencies. Beginning in 1997, mobile phone service was introduced
throughout Kerala. Fishermen and wholesalers started using mobile phomes
to acquire information about the distribution of supply and demand across
beach markets. Subsequently, price dispersion and fish wastage dropped
sharply. The basic economics of this story is clear: communication
technology enabled the creation of a unified fish market, and a careful study
of this episode documents that both fishermen and consumers benefited
significantly.

Opportunities for new connections and market creation are potentially
greater with digital technologies, and some platforms have already made use
of them. An inspiring example is the mobile currency and money-transfer
system M-Pesa, which was introduced in Kenya in 2007 and provides cheap
and fast banking services using mobile phones. This system spread to 65
percent of the Kenyan population two years after its introduction and has
since been adopted by several other developing countries. It 1s estimated to
have generated broad-based benefits to these economies. As another
example, Airbnb has created a new market where people can rent
accommodations, expanding choice for consumers and generating
competition with hotel chains.

Even in areas such as translation where Al-based automation has been
quite successful, there are complementary alternatives based on the creation
of new platforms. For example, rather than just relying on fully automated
and often low-quality translation, one could also build platforms that bring
together people needing higher-quality language service and qualified
multilingual people around the world.

New platforms need not be confined to those specializing in monetary
transactions. Decentralized digital structures can be used to build platforms
for broader forms of collaboration, sharing of expertise, and collective
action, as we will discuss in Chapter 11.

The successes of MU we have mentioned are among the most productive
applications of digital technologies and have paved the way to myriad other
imovations. Nevertheless, they are, overall, marginal to the current direction
of Al. For 2016, McKinsey Global Institute estimated that $20-$30 billion
out of the total global Al spending of $26—$39 billion comes from a handful
of big tech companies in the United States and China. Unfortunately, as far as



we can tell, most of this spending appears to go toward massive data
collection that is targeted at automation and surveillance.

So why are tech companies not developing tools that help humans and at
the same time boost productivity? There are several reasons for this, all of
them informative about the broader forces we are confronted with. Consi der
the teaching example, and recall that new tasks, as in this example, are useful
in part because they increase productivity by generating meaningful and hi gh-
paying jobs for humans—in this instance, for teachers. Yet new teaching tasks
imply greater costs for schools already strapped for cash. Most public
schools, like other modern organizations, have to focus on containing labor
costs and may struggle to hire additional teachers. Consequently, new
algorithms for automated grading or automated teaching could appear more
attractive to them.

The same is true in health care. Despite the $4 trillion that the United
States spends on health care, hospitals also face budget pressure, and a
shortage of nurses became painfully evident during the COVID-19 pandemic.
New technologies that increase nurses’ capabilities and responsibilities
would mean hiring more nurses for higher-quality health care. This
observation reiterates a key point: human-complementary machines are not
attractive to organizations when they are intent on cost cutting,

Another challenge is that new platforms and methods of aggregating and
providing information to users also open up possibilities for novel
exploitative uses. The World Wide Web, for instance, has become as much a
platform for digital advertisement and propagation of misinformation as a
source of useful information for people. Recommendation systems are often
used for steering customers to specific products, depending on the platform’s
financial incentives. Digital tools can provide information to managers not
just for better decision making but also for the better monitoring of workers.
Some of the Al-powered recommendation systems have incorporated and
reintensified existing biases—for example, toward race in hiring or toward
race in the justice system. Platforms for ride sharing and delivery have
imposed exploitative arrangements on workers lacking protection or job
security. Hence, the way in which even the most promising applications of
human-machine complementarity are used is still dependent on market
incentives, the vision and priorities of tech leaders, and countervailing
powers.



Besides, there is an equally insurmountable barrier to human-machine
complementarity. Under the shadow of the Turing test and the Al illusion, top
researchers in the field are motivated to reach human parity, and the field
tends to value and respect such achievements ahead of MU. This then biases
innovation toward finding ways of taking tasks away from workers and
allocating them to Al programs. This problem is, of course, amplified by
financial incentives coming from large organizations intent on cost cutting by
using algorithms.

Mother of All Inappropriate Technologies

It is not only workers and citizens in the industrialized world who will pay
the price for the Al illusion.

Despite economic growth in many poorer nations over the last five
decades, more than three billion people in the developing world still live on
less than $6 per day, making it difficult for them to achieve three square
meals each day, together with money for housing, clothing, and health care.
Many pin their hopes on technology to alleviate this poverty. New
technologies, introduced and perfected in Europe, the United States, or
China, can be transferred to and adopted by developing nations and power
their economic growth. International trade and globalization are also argued
to be critical ingredients in this process, for low-income nations can export
the products they produce with advanced technologies.

Success stories of very rapid economic growth, including South Korea,
Taiwan, Mauritius, and more recently China, seem to bear this out. Each
country achieved per-capita average growth rates of over 5 percent a year
for periods of more than thirty years. In all these cases, industrial
technologies played a major role in growth, as did exports to world markets.

But how and whether developing countries benefited from technology
imports is more nuanced than typically presumed. A few economists, such as
Frances Stewart, realized in the 1970s that technology imports may not work,
and in fact may make things worse in terms of inequality and poverty,
because the West’s technologies are often “inappropriate” for the needs of
developing nations. African agriculture illustrates the problem. High- and
middle-income countries account for almost all the research spending on
agricultural technologies, and a significant fraction has been targeted at the



most perennial problem of agriculture: crop pests and pathogens, which are
estimated to destroy perhaps as much as 40 percent of the world’s
agricultural output. For example, the European maize borer, which affects
corn in Western Europe and North America, has received a lot of attention,
and resistant strains of crops have been developed (including more than five
thousand biotech patents and various genetically modified varieties). The
same is true for the western corn rootworm, also affecting corn in the United
States and parts of Western Europe, and the cotton bollworm, once a key
threat against US cotton,

But these crops and chemicals are not very useful for African and South
Asian agriculture, which faces different pests and pathogens. The African
maize stalk borer, which afflicts the same crops in Africa, and the desert
locust, which ravages almost all crops in Africa and much of South Asia, are
phenomenal barriers to agricultural productivity in these regions. But these
have received much less attention (very few patents and no genetically
modified varieties}). The overall amount of research dollars and new
innovations targeted at the problems of the low-income developing world
have been pitiful in general. Estimates suggest that global agricultural
productivity could be increased by as much as 42 percent if biotech research
effort was redirected away from Western pests and pathogens toward those
afflicting the developing world.

New crops and agricultural chemicals targeted predominantly to Western
agriculture are an example of inappropriate technology. Stewart’s emphasis
was not so much on pests and pathogens, but on how capital-intensive new
production methods were. For instance, complex industrial machinery in
manufacturing and combine harvesters in agriculture may be mismatched to
the needs of the developing world, where capital is scarce and creating jobs
-—good jobs—for their population during the growth process is a major
imperative.

Such mismatches are costly for economic development. Developing
nations may end up not using new technologies because they are ill-suited to
their needs or are too capital-intensive. Indeed, crop varieties developed in
the United States are rarely exported to poorer nations, unless they happen to
have a very similar climate and pathogens. Even when new technologies
developed in advanced economies are introduced in the developing world,
the benefits are often limited because the receiving countries may lack the



highly skilled labor required to maintain and operate the latest machines.
Additionally, technologies imported from the rich world tend to create a dual
structure, with a highly capital- and skill-intensive sector paying decent
wages alongside a much larger sector with few good jobs. In sum,
inappropriate technologies fail to reduce world poverty and may instead
increase inequality both between the West and the rest, and within
developing nations.

Many in the developing world were already aware of these imperatives.
Some of the most transformative innovations of the twentieth century were
developed in what is now referred to as the “Green Revolution,” which was
spearheaded by researchers in Mexico, the Philippines, and India. New rice
varieties invented in the West were not suitable to the soil and climatic
conditions in these countries. A breakthrough came in 1966 with the breeding
of a new hybrid rice variety, IR8 rice, which rapidly doubled rice production
in the Philippines. IR8 and related cultivars developed in collaboration with
Indian research institutes were soon being adopted in India as well and
revolutionized that country’s agriculture, in some places increasing yields by
as much as tenfold. International funding from the Rockefeller Foundation
and the leadership of scientists, especially the agronomist Norman Borlaug,
who was later awarded the Nobel Peace Prize for saving more than a billion
people from starvation, were instrumental as well.

Today, we are confronted with the mother of all inappropriate
technologies, in the form of Al but there are no efforts analogous to the
Green Revolution (nor are many Al researchers attempting to fill Borlaug’s
shoes).

Poverty reduction and rapid economic growth in cases such as South
Korea, Taiwan, and China did not just come from the import of Western
production methods. Economic success resulted from new technologies
enabling the human resources of these countries to be used more effectively.
In all these cases, the technologies created new employment opportunities for
most of the workforce, and the countries themselves also increased
investment in education in order to improve the match between the
technologies and their population’s skills.

The current trajectory of Al is precluding this pathway. Digital
technologies, robotics, and other automation equipment have already
increased the skill requirements of global production and started remaking



the international division of labor—for example, contributing to a process of
deindustrialization in many developing nations that have workforces
primarily consisting of people with low education.

Al is again the next act in this process. Rather than creating jobs and
opportunities for the majority of the population in poor and middle-income
countries, the current path of Al is raising the demand for capital, highly
skilled production workers, and even higher-skilled services, such as from
management-consulting and tech companies. These are exactly the resources
that are most lacking in the developing world. As in the examples of export-
led growth and the Green Revolution, many of these economies have
abundant resources that can be used for spearheading economic growth and
reducing poverty. But these are the resources that will remain unused if the
future of technology moves in the pathways that the Al illusion dictates.

Rebirth of the Two-Tiered Society

The Industrial Revolution started in eighteenth-century Britain, where most of
the population had little political or social power. Predictably, the direction
of progress and productivity growth in such a two-tiered society initially
worsened the living conditions of millions. This began changing only when
the distribution of social power shifted, altering technology’s course so that it
raised the marginal productivity of workers. Also critical were institutions
and norms for robust rent sharing in workplaces, ensuring that higher
productivity translated into wage growth. This struggle over technology and
worker power started to transform the highly hierarchical nature of British
society in the second half of the nineteenth century.

In chapters 6 and 7, we followed this process from Britain to the United
States, as technological leadership shifted. Twentieth-century US technology
moved even more decisively in the direction of raising worker marginal
productivity. In this way it laid the foundations of shared prosperity, not just
domestically but also in much of the world, as American techniques and
innovations spread globally and enabled mass production and the rise of a
middle class in scores of countries.

The United States has remained at the forefront of technology over the last
fifty years, and its production methods and practices, especially its digital
innovations, are still spreading throughout the world, but now with very



different consequences. The US model of shared prosperity broke down as
power became concentrated in the hands of big corporations, the institutions
and norms of rent sharing unwound, and technology went in a predominantly
automating direction starting around 1980.

All of this was underway, and the vision that animates the use of
technology for automating work, monitoring, and squeezing out workers was
firmly in place, before the latest wave of Al We were already on our way
back to a two-tiered society long before the 2010s. With a heightened Al
illusion, we are seeing this process accelerate.

Modern Al amplifies the tools in the hands of tech elites, enabling them to
create more ways of automating work, sidelining humans, and supposedly
doing all sorts of good deeds such as increasing productivity and solving
major problems facing humanity (they claim). Empowered by Al, thesc
leaders feel even less need to consult the rest of the population. In fact, many
of them think that most humans are not that wise and may not even understand
what is good for them.

The marriage of digital technologies and big business had created a
growing number of billionaires by the mid-2000s. Such fortunes multiplied
once Al tools started spreading in the 2010s. But this was not because Al
turned out to be anything as productive or amazing as its boosters have
maintained. On the contrary, Al-based automation often fails to increase
productivity by that much. Worse, it is no way to build shared prosperity. It
nevertheless enthralls and enriches tycoons and top managers as it
disempowers workers and opens up new ways of monetizing information
about people, which we will discuss in Chapter 10.

That all of this gets ignored in a mad rush to use digital technologies to
automate work and monitor humans is the reason why we have dubbed this
new phase of the vision the Al illusion. This illusion is set to intensify in the
next decade, as more powerful algorithms are developed, global online
connectivity grows, and household appliances and other machines become
permanently connected to the cloud, allowing more extensive data collection,

Today we are moving closer to H. G. Wells’s Time Machine future
dystopia. Our society has already become two-tiered. On top there are the
big tycoons, who firmly believe they have earned their wealth because of
their amazing genius. At the bottom we have regular people whom tech
leaders view as error-prone and ripe for replacement. As Al penetrates more



and more aspects of modern economies, it looks increasingly likely that the
two tiers will grow further apart.

None of this had to be the case. Digital technologies did not have to be
used for just automating work, and Al technologies did not have to be
applied indiscriminately to amplify the same trend. The tech community did
not have to be mesmerized by machine intelligence instead of working on
machine usefulness. There is nothing foreordained about this path of
technology, nor is there anything inevitable about the two-tiered society that
our leaders are creating,

There are ways out of our current conundrum by reconfiguring the
distribution of power in society and redirecting technological change. Such
change will have to work through bottom-up, democratic processes.
Ominously, however, Al is also breaking democracy.



